This article is cited in
9 papers
Short Communications
Two inequalities for symmetric processes and symmetric distributions
E. L. Presman Moscow
Abstract:
It is proved that there exists a constant
$C_1$ such that:
a) for any stochastic process
$\xi_t$ with symmetric stationary independent increments and for any
$\delta>0$
$$
|\mathbf P\{\xi_t\in[x,x+h)\}-\mathbf P\{\xi_{t+\delta}\in[x,x+h)\}|<
C_1\gamma_{ht}(1+|ln\gamma_{ht}|)^4\ln\biggl(1+\frac{\delta}{t}\biggr),
$$
where $\displaystyle\gamma_{ht}=\sup_x\mathbf P\{\xi_t\in[x,x+h)\}$,
b) for any symmetric probabilistic measure
$F$ on the real line and for any
$a>0$
$$
|a(F-E)e^{a(F-E)}\{[x,x+h)\}|<C_1\gamma_h(1+|\ln\gamma_h|)^4,
$$
where $\displaystyle\gamma_h=\sup_x e^{a(F-E)}\{[x,x+h)\}$, $\displaystyle e^{a(F-E)}=e^{-a}\sum_{k=0}^{\infty}(a^kF^k)/k!$,
$F^n$ is
$n$-fold convolution of
$F$ with itself,
$E$ is a probabilistic measure with a unit mass at zero.
Received: 04.09.1979