RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1995 Volume 40, Issue 3, Pages 665–669 (Mi tvp3465)

Short Communications

On reflection of continuous functions and random processes having local times

F. S. Nasyrov

Ufa State Aviation Technical University

Abstract: Assuming that the local time $\alpha(t,u)$, $t\in[0,\infty)$, $u\in\mathbf R$, of a real-valued continuous function $X(s)$, $s\in[0,\infty)$, is continuous in the time parameter, we show that
$$ -\min_{0\le s\le t}\min(X(s),0)=\int_{-\infty}^0\mathbf{1}(\alpha(t,v)>0)\,dv, $$
where the function $\int_{-\infty}^01(\alpha(t,v)>0)\,dv$ is the local time for $\xi(s)=\alpha(s,X(s))$. We apply this result to random processes.

Keywords: local time, reflection problem, Brownian motion.

Received: 15.10.1992


 English version:
Theory of Probability and its Applications, 1995, 40:3, 563–567

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026