RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1995 Volume 40, Issue 1, Pages 125–142 (Mi tvp3295)

On the strong law of large numbers for random quadratic forms

T. Mikosch

RUG Groningen, Fac. Maths and Phys., Groningen, Netherlands

Abstract: The paper establishes strong laws of large numbers for the quadratic forms $Q_n(X,X)=\sum_{i=1}^n\sum_{j=1}^na_{ij}X_iX_j$ and the bilinear forms $Q_n(X,Y)=\sum_{i=1}^n\sum_{j=1}^na_{ij}X_iY_j$, where $X=(X_n)$ is a sequence of independent random variables and $Y=(Y_n)$ is an independent copy of it. In the case of i.i.d. symmetric $p$-stable random variables $X_n$ we derive necessary and sufficient conditions for the strong laws of $Q_n(X,X)$ and $Q_n(X,Y)$ for a given nondecreasing sequence $(b_n)$ of normalizing constants. For these classes of variables $(X_n)$ the strong laws $\lim b_n^{-1}Q_n(X,X)=0$ a.s. and $\lim b_n^{-1}Q_n(X,Y)=0$ a.s. are shown to be equivalent provided that $a_{ii}=0$ for all $i$.

Keywords: quadratic forms, bilinear forms, strong law of large numbers, Prokhorov-type characterization, p-stable random variables, domains of partial attraction, tail probabilities.

Received: 08.05.1991

Language: English


 English version:
Theory of Probability and its Applications, 1995, 40:1, 76–91

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026