RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1976 Volume 21, Issue 1, Pages 16–33 (Mi tvp3272)

This article is cited in 18 papers

Asymptotic expansions associated with some statistical estimates in the smooth case. II. Expansions of moments and distributions

S. I. Gusev

Leningrad

Abstract: Let $x_1,\dots,x_n$ be a sample from a distribution $\mathbf P_{\theta}$ with density $f(x,\theta)$, $\theta\in \Theta\subset R^1$. Let $T_n$ be a Bayesian estimate or a maximum posterior density estimate. The expansions
$$ \sqrt n(T_n-\theta)=\xi_0+\xi_1\frac{1}{\sqrt n}+\dots+\xi_{k-1}\biggl(\frac{1}{\sqrt n}\biggr)^{k-1}+\widetilde\xi_{k,n}\biggl(\frac{1}{\sqrt n}\biggr)^k, $$
obtained in [1], imply expansions of the moments $\mathbf E_{\theta}(\sqrt n(T_n-\theta))^m$ where $m\ge 1$ is an integer, and expansions of the distribution functions $\mathbf P_{\theta}\{\sqrt n(T_n-\theta)<z\}$. Linnik's problem of calculating the terms of order $1/n$ in the expansion of $\mathbf E_{\theta}(\sqrt n(T_n-\theta))^2$ is solved.

Received: 11.03.1975


 English version:
Theory of Probability and its Applications, 1976, 21:1, 14–33

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026