This article is cited in
18 papers
Asymptotic expansions associated with some statistical estimates in the smooth case. I. Decompositions of random variables
S. I. Gusev Leningrad
Abstract:
Let
$x_1,\dots,x_n$ be a sample from a distribution
$\mathbf P_\theta$ with density
$f(x,\theta)$,
$\theta\in\Theta$, where
$\Theta$ is an open set on the real line. Let
$T_n$ be a Bayessian estimate or a maximum likelihood estimate. Put
$$
\Delta_i=\frac1{\sqrt n}\sum_{j=1}^n(l_i(x_j,\theta)-\mathbf E_\theta l_i(x_1,\theta)),\quad i=1,\dots,k+1,\quad k\ge1,
$$
where
$$
l_i(x,\theta)=
\begin{cases}
\frac{\partial^i}{\partial\theta^i}\ln f(x,\theta),&f(x,\theta)\ne0,
\\
0,&f(x,\theta)=0.
\end{cases}
$$
Supposing regularity conditions (
$f(x,\,\cdot\,)$ has
$k+2$ continuous derivatives, the moments
$\mathbf E_\theta|l_i(\,\cdot\,\theta)|^{k+2}$ are uniformly bounded on compacts etc.), we obtain an expansion of the form
$$
\sqrt n(T_n-\theta)=\xi_0+\xi_1\frac1{\sqrt n}+\dots+\xi_{k-1}\biggl(\frac1{\sqrt n}\biggr)^{k-1}+\widetilde\xi_{k,n}\biggl(\frac1{\sqrt n}\biggr)^k,
$$
where
$\xi_\theta=\Delta_1/I(\theta)$,
$I(\theta)$ is Fischer's information quantity,
$\xi_i$ are polynomials in
$\Delta_1,\dots,\Delta_{i+1}$,
$$
\mathbf P_\theta\{|\widetilde\xi_{k,n}|>n^\delta\}=O\bigl(n^{-\frac{k-1}2-C^\delta}\bigr)
$$
for each sufficiently small
$\delta>0$ uniformly on compacts. This expansion implies asymptotic expansions of
$\mathbf E_\theta(\sqrt n(T_n-\theta))^m$ and
$\mathbf P_\theta\{\sqrt n(T_n-\theta)<z\}$.
Received: 06.06.1974