RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1975 Volume 20, Issue 2, Pages 402–403 (Mi tvp3151)

This article is cited in 4 papers

Short Communications

An inequality for moments of a random variable

V. V. Petrov

Leningrad

Abstract: Let $X$ be a random variable. For any $r>0$, we set $\beta_r=\mathbf E|X|^r$. The following inequality is proved:
$$ \beta_r^{1/r}\le\gamma^{1/r-1/s}\beta_s^{1/s}\quad(r<s) $$
where $\gamma=\mathbf P(X\ne0)$. This inequality is optimal in a certain sense.

Received: 11.11.1974


 English version:
Theory of Probability and its Applications, 1976, 20:2, 391–392

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026