RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1978 Volume 23, Issue 4, Pages 782–795 (Mi tvp3112)

This article is cited in 34 papers

On the uniqueness and existence of solutions of stochastic equations with respect to semimartingales

L. I. Gal'čuk

Moscow

Abstract: Let $a=(a_t)$, $t\in[0,\infty[$, be a predictable process with locally integrable variation, $m=(m_t)$ be a continuous local martingale, $p$ be a stochastic integer-valued measure on $\mathfrak B([0,\infty[)\times\mathfrak B(R^d\setminus\{0\})$ and $\lambda$ be a dual predictable projection of $p$. The processes $a$ and $m$ take values in $R^d$, $d\ge 1$.
The uniqueness and existence theorem is proved lor the solutions of a stochastic integral equation
\begin{gather*} Y_t(\omega)=N_t(\omega)+\int_0^t\sum_{j=1}^df^j(\omega,s,Y_{s-}(\omega))\,da_s^j(\omega)+ \int_0^t\sum_{j=1}^dg^j(\omega,s,Y_{s-}(\omega))\,dm_s^j(\omega)+\\ \int_0^t\int_{|u|\le 1}h(\omega,s,u,Y_{s-}(\omega))(p-\lambda)(\omega,ds,du)+\\ \int_0^t\int_{|u|>1}h(\omega,s,u,Y_{s-}(\omega))p(\omega,ds,du), \end{gather*}
where $N=(N_t)$ is a known process the paths of which are right-hand continuous and have left-hand limits. The functions $f(\omega,s,x)$, $g(\omega,s,x)$, $h(\omega,s,u,x)$ satisfy the Lipschitz conditions in $x$ and are predictable in other variables.

Received: 04.01.1977


 English version:
Theory of Probability and its Applications, 1979, 23:4, 751–763

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026