Abstract:
Für gerichtete Familien $\{\pi^{\lambda}\}_{\lambda\in\Lambda}$ zufälliger Maße wird das asymptotische Verhalten der Wahrscheinlichkeit untersucht, daß $\pi^{\lambda}$ einer vorgegebenen Menge endlicher $\sigma$-additiver maße angehört. Hierzu werden analog zu [1]–[4] Exponentialabschätzungen bewiesen, die es gestatten, das zugehörige Wirkungsfunktional zu bestimmen. Insbesondere wird die durch die Gleichung $\displaystyle\pi^t(\Gamma)=\frac{1}{t}\int_0^t\chi_{\Gamma}(X_s)\,ds$ definierte Familie $\{\pi^t\}_{t>0}$ zufälliger Maße betrachtet, die durch einen Diffusionsprozeß $X_t$ auf einer kompakten Mannigfaltigkeit erzeugt wird.