RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 2003 Volume 48, Issue 1, Pages 3–21 (Mi tvp298)

This article is cited in 4 papers

Transient phenomena in a random walk

A. K. Aleshkyavichene, S. V. Nagaev

Institute of Mathematics and Informatics

Abstract: The paper studies the limit distributions of the maximum of sums $\max_{1\le k\le n}\sum_{l=1}^k\xi_{n,l}$ for the triangular array $\xi_{n,k}$, $k=1,\ldots,n$, $n=1,2,\ldots\,$, of independent identically distributed random variables in a singular series in cases where $a_n=E\xi_{n,k}\to 0$ and/or 1) $a_n\sqrt n\to\infty$, or 2) $a_n\sqrt n\to-\infty$, or 3) $a_n\sqrt n\to 0$ as $n\to\infty$. The direct proof that the analytic expressions for limit laws coincide was previously obtained by different authors and is given. Moreover, for these transient cases the convergence of the sequence of distributions of maximums to the limit laws is proved with the help of the characteristic functions method.

Keywords: triangular array, maximum of sequential sums, limit distributions, method of characteristic functions.

Received: 17.11.1998

DOI: 10.4213/tvp298


 English version:
Theory of Probability and its Applications, 2004, 48:1, 1–18

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026