RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1974 Volume 19, Issue 3, Pages 488–500 (Mi tvp2922)

This article is cited in 24 papers

On the distribution of the number of real roots of random polynomials

N. B. Maslova

Leningrad

Abstract: Let $\xi_0,\xi_1,\dots$ be a sequence of independent identically distributed random variables and $N$ be the number of real roots of the polynomial
$$ Q(x)=\sum_{j=0}^n\xi_jx^j. $$

The main result is the following
Theorem. {\it If $\mathbf P\{\xi_j=0\}=0$, $\mathbf E\xi_j=0$ and $\mathbf E|\xi_j|^{2+s}<\infty$ for some positive number $s$, then, for any real} $t$,
$$ \mathbf E\exp\{it(N-\mathbf EN)(\mathbf DN)^{-1/2}\}\underset{n\to\infty}\longrightarrow å^{-t^2/2}. $$


Received: 28.09.1972


 English version:
Theory of Probability and its Applications, 1975, 19:3, 461–473

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026