Abstract:
Let $\xi_t^{(n)}$, $t\le T$ be the sequence of solutions of stochastic differential equations
$$
d\xi_t^{(n)}=\alpha_t^{(n)}(\xi_t^{(n)})\,dt+dw_t,\qquad\xi_t^{(n)}=0,\qquad n=0,1,\dots
$$
In this paper we study the conditions under which
$$
\lim_{n\to\infty}\mathbf M\biggl|\int_0^t\alpha_s^{(n)}(w)\,ds-
\int_0^t\alpha_s^{(0)}(w)\,ds\biggr|^2=0,\qquad t\le T,
$$
and the conditions under which
$$
\lim_{n\to\infty}\mathbf M|\xi_t^{(n)}-\xi_t^{(0)}|^2=0,\qquad t\le T.
$$