RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1979 Volume 24, Issue 4, Pages 866–872 (Mi tvp2914)

Short Communications

On the strong convergence of the sequence of diffusion type processes

S. I. Pisanec

Institute of Cybernetics AS Ukrainian SSR, Kiev

Abstract: Let $\xi_t^{(n)}$, $t\le T$ be the sequence of solutions of stochastic differential equations
$$ d\xi_t^{(n)}=\alpha_t^{(n)}(\xi_t^{(n)})\,dt+dw_t,\qquad\xi_t^{(n)}=0,\qquad n=0,1,\dots $$
In this paper we study the conditions under which
$$ \lim_{n\to\infty}\mathbf M\biggl|\int_0^t\alpha_s^{(n)}(w)\,ds- \int_0^t\alpha_s^{(0)}(w)\,ds\biggr|^2=0,\qquad t\le T, $$
and the conditions under which
$$ \lim_{n\to\infty}\mathbf M|\xi_t^{(n)}-\xi_t^{(0)}|^2=0,\qquad t\le T. $$


Received: 10.10.1977


 English version:
Theory of Probability and its Applications, 1980, 24:4, 863–869

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026