RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1979 Volume 24, Issue 2, Pages 399–407 (Mi tvp2874)

This article is cited in 23 papers

Short Communications

On the law of iterated logarithm in Chung's form for functional spaces

A. A. Mogul'skiĭ

Novosibirsk

Abstract: Let $(X_n)$ be a sequence of independent identically distributed random vectors in a Banach space $(B,\|\cdot\|)$. The paper deals with the following form of the law of iterated logarithm in $B$: with probability 1
$$ \liminf_{n\to\infty}\frac{\|X_1+\dots+X_n\|}{\sqrt n}\Lambda(\ln\ln n)=1. $$
For example, let $F_n(t)$ be the empirical distribution function for a random sample $(x_1,\dots,x_n)$, $\mathbf P\{x_i<t\}=t\ (0\le t\le 1)$,
$$ K_n=\sup_{0\le t\le 1}|F_n(t)-t|,\qquad \omega_n^2=\int_0^1(F_n(t)-t)^2\,dt. $$
Then with probability 1
\begin{gather*} \liminf_{n\to\infty}K_n\sqrt{n\ln\ln n}=\pi/\sqrt 8, \\ \liminf_{n\to\infty}\omega_n\sqrt{n\ln\ln n}=1/\sqrt 8. \end{gather*}


Received: 22.03.1977


 English version:
Theory of Probability and its Applications, 1979, 24:2, 405–413

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026