RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1974 Volume 19, Issue 2, Pages 383–386 (Mi tvp2860)

This article is cited in 12 papers

Short Communications

On the estimation of moments of sums of independent random variables

V. V. Sazonov

Moscow

Abstract: Let $\mathscr G$ be the class of real valued functions satisfying conditions (1). It is proved that if $\xi_1,\dots,\xi_n$ are independent random variables such that $\mathbf E\xi_i=0$ and $\mathbf E|\xi_i|^mg(\xi_i)<\infty$ for some integer $m\ge2$ and some $g\in\mathscr G$, $g(\,\cdot\,)\ne|\,\cdot\,|^\delta$, $0\le\delta\le1$, then the inequality (2) holds true; in the case $g(\,\cdot\,)=|\,\cdot\,|^\delta$ a slightly better inequality is proved.

Received: 13.07.1973


 English version:
Theory of Probability and its Applications, 1975, 19:2, 371–374

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026