RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 2003 Volume 48, Issue 3, Pages 620–627 (Mi tvp277)

This article is cited in 1 paper

Short Communications

On the existence of probability distributions with given marginals

F. Mauch

University of Konstanz

Abstract: Let $X=\{0,\ldots, n-1\}$ and $\Gamma=\{(x_1,\ldots, x_s)\}\in X^s\colon\,\sum_{\sigma=1}^s x_\sigma=n-1$. For the marginals of probability distributions on $\Gamma$ with the additional property of forming an $s$-tuple of decreasing probabilities on $X$ a simple characterization is given. This has an interesting application to asymptotic spectra in the sense of Strassen [J. Reine Angew. Math., 384 (1988), pp. 102–152; 413 (1991), pp. 127–180]. Some correlated questions are discussed in an appendix.

Keywords: probability law, marginal distribution, asymptotic spectra in the sense of Strassen.

Received: 30.03.1999

Language: English

DOI: 10.4213/tvp277


 English version:
Theory of Probability and its Applications, 2004, 48:3, 541–548

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026