RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1974 Volume 19, Issue 1, Pages 36–51 (Mi tvp2757)

This article is cited in 24 papers

On the variance of the number of real roots of random polynomials

N. B. Maslova

Leningrad

Abstract: Let $\xi_0,\xi_1,\dots,\xi_n,\dots$ be a sequence of independent identically distributed random variables, $N_n$ be the number of real roots of the polynomial $\sum_{j=0}^n\xi_jx^j$. The main result is
Theorem 1. {\em If $\mathbf P\{\xi_j=0\}=0$, $\mathbf E\xi_j=0$, $\mathbf E|\xi_j|^{2+s}<\infty$ for some positive number $s$, then}
$$ \mathbf DN_n\sim4\biggl(\frac1\pi-\frac2{\pi^2}\biggr)\ln n\quad(n\to\infty). $$


Received: 22.04.1971


 English version:
Theory of Probability and its Applications, 1974, 19:1, 35–52

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026