RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1973 Volume 18, Issue 3, Pages 605–608 (Mi tvp2734)

This article is cited in 2 papers

Short Communications

Conditions for convergence of the superposition of stochastic processes in J-topology

D. S. Sil'vestrov

Kiev

Abstract: Let $\zeta_\varepsilon(t)$, $t\ge0$, and $\nu_\varepsilon(t)$, $t\in[0,T]$, Üe right-continuous stochastic processes without discontinuities of the second kind.
The paper investigates conditions of convergence in J-topology of the superposition of these processes, $\zeta_\varepsilon(\nu_\varepsilon(t))$, $t\in[0,T]$.
In the case $\nu_\varepsilon(t)=t$, $t\in[0,T]$, with probability 1 these conditions coincide with well-known Skorohod's conditions of convergence of stochastic processes in J-topology.
The results obtained are applied to processes of stepped sums of a random number of random variables.

Received: 20.10.1971


 English version:
Theory of Probability and its Applications, 1974, 18:3, 579–582

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026