RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1973 Volume 18, Issue 3, Pages 593–595 (Mi tvp2731)

This article is cited in 1 paper

Short Communications

On the moments of distributions attracted to stable laws

V. V. Petrov

Leningrad

Abstract: The following theorem is proved. Let the distribution function $F(x)$ belong to the domain of the normal attraction of a stable law with exponent $\alpha$, $0<\alpha<2$. If $\delta>0$ and $\psi(x)$ is an even function which is positive and nondecreasing on the half-line $x\ge\delta$, then convergence of the integral $\int_\delta^\infty\frac{dx}{x\psi(x)}$ is equivalent to convergence of the integral $\int_{|x|\ge\delta}\frac{|x|^\alpha\,dF(x)}{\psi(x)}$.

Received: 24.01.1972


 English version:
Theory of Probability and its Applications, 1974, 18:3, 569–571

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026