RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1973 Volume 18, Issue 1, Pages 109–121 (Mi tvp2684)

This article is cited in 15 papers

On strengthening of Lyapunov type estimates (the case when summands distributions are close to the normal one)

S. V. Nagaeva, V. I. Rotar'b

a Novosibirsk
b Moscow

Abstract: Let $\{X_j\}_{j=1}^n$ be a sequence of independent random variables. Put
\begin{gather*} \mathbf MX_j=0,\quad\mathbf MX_j^2=\sigma_j^2,\quad B^2=\sum_{j=1}^n\sigma_j^2,\quad C=\sum_{j=1}^n\sigma_j^3; \\ \nu_j=3\int_{-\infty}^\infty x^2|F_j(x)-\Phi(x/\sigma_j)|\,dx \end{gather*}
where $F_j(x)=\mathbf P\{X_j<x\}$, $\Phi(x)=(2\pi)^{-1/2}\int_{-\infty}^xe^{u^2/2}\,du$. Let
$$ \Lambda=\sum_{j=1}^n\nu_j,\quad\delta=\sup_x\biggl|\mathbf P\biggl\{\sum_{j=1}^nX_j<Bx\biggr\}-\Phi(x)\biggr|. $$
In the paper, some estimates of $\delta$ are obtained. The simpliest consequence from these estimates is the following:
$$ \delta\le L\max\biggl\{\frac\Lambda{B^3};\biggl(\frac{\Lambda}{B^3}\biggr)^{1/4}\biggl(\frac C{B^3}\biggr)^{3/4}\biggr\} $$
where $L$ is an absolute constant.

Received: 04.03.1971


 English version:
Theory of Probability and its Applications, 1973, 18:1, 107–119

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026