This article is cited in
1 paper
Short Communications
Limit theorems for the processes of diffusion in $R^m$
S. I. Pisanec Kiev
Abstract:
Let
$\xi_t^{(n)}$ (
$n=0,1,\dots$) be a sequence of solutions of stochastic differential equations
$$
d\xi_t^{(n)}=\alpha_t^{(n)}(\xi^{(n)})dt+\beta_t(\xi^{(n)})dw_t,\qquad
\xi_0^{(n)}=\xi_0,\ 0\le t\le T,\ n=0,1,\dots
$$
In the paper we study the conditions which are sufficient for
$$
\lim_{n\to\infty}\mathbf M|\xi_t^{(n)}-\xi_t^{(0)}|^2=0,\qquad t\le T,
$$
or for
$$
\lim_{n\to\infty}\mathbf M\biggl|\int_0^t\alpha_s^{(n)}(\eta)\,ds-
\int_0^t\alpha_s^{(0)}(\eta)\,ds\biggr|^2=0,\qquad t\le T,
$$
where
$\eta_t$ is the solution of an equation
$$
\alpha\eta_t=\beta_t(\eta)\,dw_t,\qquad \eta_0=\xi_0,\qquad t\le T.
$$
Received: 31.07.1978