RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 2009 Volume 54, Issue 1, Pages 202–213 (Mi tvp2556)

This article is cited in 11 papers

The Rate of Convergence of Spectra of Sample Covariance Matrices

F. Götze, A. N. Tikhomirov

Bielefeld University

Abstract: It is shown that the Kolmogorov distance between the spectral distribution function of a random covariance matrix $p^{-1}XX^T$, where $X$ is an $n\times p$ matrix with independent entries and the distribution function of the Marchenko–Pastur law is of order $O(n^{-1/2})$. The bounds hold uniformly for any $p$, including $p/n$ equal or close to $1$.

Keywords: sample covariance matrix, Marchenko–Pastur distribution, spectral distribution function.

Received: 25.08.2008

Language: English

DOI: 10.4213/tvp2556


 English version:
Theory of Probability and its Applications, 2010, 54:1, 129–140

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026