RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 2003 Volume 48, Issue 4, Pages 766–784 (Mi tvp255)

Régularité ergodique de quelques classes de Donsker

M. Weber

Institut de Recherche Mathématique Avancée, Université de Strasbourg

Abstract: We use a weak decoupling inequality in ergodic theory for maximal operators. We apply this inequality to the study of the property for a set of functions to be a Donsker class. The sets we examine are built from a sequence of $L^2$-operators and naturally appear in the study of the almost sure regularity properties of these. We obtain new individual necessary conditions (for a given $f\in L^2(\mu)$) and new global necessary conditions. The latter conditions are of uniform type and have a natural translation on the regularity properties of the canonical Gaussian process $Z$ defined on $L^2(\mu)$.

Keywords: ergodic maximal operator, almost sure convergence, Gaussian processes, decoupling inequality, entropy numbers.

Received: 15.10.2002

Language: French

DOI: 10.4213/tvp255


 English version:
Theory of Probability and its Applications, 2004, 48:4, 681–696

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026