RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1981 Volume 26, Issue 2, Pages 362–368 (Mi tvp2516)

This article is cited in 31 papers

Short Communications

On the detection of «discordance» of Wiener process

L. Yu. Vostrikova

Moscow

Abstract: The drift of a multidimensional Wiener process equals to $\theta_0$ on a time interval $[0,t_0]$ and equals to $\theta_1$ on $(t_0,T]$, the values $\theta_0$, $\theta_1$ and $t_0$ are unknown. We assume that the condition $\alpha T\le t_0\le(1-\alpha)T$ holds where the number $\alpha\in(0,1/2)$.
The maximum likelihood estimates of the unknown parameters $t_0/T$, $\theta_0$ and $\theta_1$ are given and their consistency is proved. We study also the test for checking the hypothesis $H_0\colon\theta_0=\theta_1$ against the alternative $H_1\colon\theta_0\ne\theta_1$ which is based on the likelihood function. An asymptotic expression for the probability of the error of the first kind is obtained.

Received: 22.04.1980


 English version:
Theory of Probability and its Applications, 1982, 26:2, 356–362

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026