RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 2003 Volume 48, Issue 4, Pages 661–675 (Mi tvp250)

This article is cited in 15 papers

On a stochastic optimality of the feedback control in the LQG-problem

T. A. Belkinaa, Yu. M. Kabanovb, E. L. Presmana

a Central Economics and Mathematics Institute, RAS
b Laboratoire de Mathématiques, Université de Franche-Comté

Abstract: We show that the optimal feedback control $\widehat u$ in the standard nonhomogeneous LQG-problem with infinite horizon has the following property. There is a constant $b_*$ such that, whatever $b> b_*$ is, the deficiency process of optimal control with respect to any possible control $u$, i.e., the difference $J_T(\widehat u\hspace*{0.2pt})- J_T(u)$ between the optimal cost process $J_T(\widehat u\hspace*{0.2pt})$ and the cost process corresponding to control $u$, is majorated at infinity by a deterministic function $b\log T$. In other words, $b\log T$ is an upper function for any deficiency process. This result, combined with an example of an LQG-regulator where, for certain $b>0$, the function $b\log T$ is not an upper function for certain deficiency processes, gives an answer to the long-standing open problem about the best possible rate function for sensitive probabilistic criteria. Our setting covers the optimal tracking problem.

Keywords: linear-quadratic regulator, optimality almost surely, observability, controllability, Riccati equation, martingale law of large numbers, upper functions, Ornstein–Uhlenbeck process.

Received: 25.12.2002

DOI: 10.4213/tvp250


 English version:
Theory of Probability and its Applications, 2004, 48:4, 592–603

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026