RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 2008 Volume 53, Issue 1, Pages 124–150 (Mi tvp2485)

This article is cited in 4 papers

Stable Processes, Mixing, and Distributional Properties. II

W. Jedidi

Université Pierre & Marie Curie, Paris VI

Abstract: In Part I of this paper [Theory Probab. Appl., 52 (2008), pp. 580–593], we considered real-valued stable Lévy processes $ (S_t^{\alpha, \beta,\gamma,\delta})_{t\ge 0}$, where the deterministic numbers $\alpha, \beta, \gamma,\delta$ are, respectively, the stability, skewness, scale, and drift coefficients. Then, allowing $ \beta, \gamma,\delta $ to be random, we introduced the notion of mixed stable processes $ (M_t^{\alpha, \beta, \gamma,\delta})_{t\ge 0}$ and gave a structure of conditionally Lévy processes. In this second part, we provide controls of the (nonmixed) densities $ G_t^{\alpha, \beta, \gamma,\delta}(x)$ when $ x $ goes to the extremities of the support of $ G_t^{\alpha, \beta, \gamma,\delta} $ uniformly in $t,\beta,\gamma,\delta $ and present a Mellin duplication formula on these densities, relative to the stability coefficient $\alpha $. The new representations of the densities give an explicit expression of all the moments of order $0<\rho<\alpha$. We also study the densities $x\mapsto H_s(x)$ of mixed stable variables $M_s^{\alpha,\beta_s,\gamma_s,\delta_s}$ (by families of random variables $(\beta_s,\gamma_s,\delta_s)_{s\in S}$) and give their asymptotic controls in the space variable $x$ uniformly in $s\in S$.

Keywords: stable processes, conditionally PIIS, Mellin convolution, density, derivatives, uniform controls.

Received: 23.06.2005

Language: English

DOI: 10.4213/tvp2485


 English version:
Theory of Probability and its Applications, 2009, 53:1, 81–105

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026