RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1982 Volume 27, Issue 4, Pages 739–756 (Mi tvp2420)

This article is cited in 14 papers

On the distributions of some statistical estimates of spectral density

R. Yu. Bentkus, R. A. Rudzkisa

a Vilnius

Abstract: Let $X_t$, $t=\dots,-1,0,1,\dots$, be a real Gaussian stationary time series with zero mean and spectral density $f(\lambda)$, $-\pi\le\lambda\le\pi$. In the paper the distribution of estimates (0.1) is considered, where $J_N(x)$ is the periodogram and $W\in L_1(-\pi,\pi)$. The asymptotic expansions of the distribution function and density of r. v. (0.5) are given and the theorem on large deviations is proved. Comparatively exact inequalities for the probabilities
$$ \mathbf P\{|\widehat f(\lambda)-\mathbf E\widehat f(\lambda)|\ge x\},\qquad \mathbf P\{\|\widehat f-\mathbf E\widehat f\|_2\ge x\},\qquad \mathbf P\{\|\widehat f-\mathbf E\widehat f\|_\infty\ge x\} $$
are derived. It is proved also that for some of the estimates (0.1) the inequalities (3.2)–(3.4) hold for all $a>0$.

Received: 26.03.1980


 English version:
Theory of Probability and its Applications, 1983, 27:4, 795–814

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026