RUS
ENG
Full version
JOURNALS
// Teoriya Veroyatnostei i ee Primeneniya
// Archive
Teor. Veroyatnost. i Primenen.,
2008
Volume 53,
Issue 2,
Pages
277–292
(Mi tvp2409)
This article is cited in
3
papers
On Mosco Convergence of Diffusion Dirichlet Forms
O. V. Pugachev
N. E. Bauman Moscow State Technical University
Abstract:
This paper considers the Mosco convergence of Dirichlet forms
$\mathcal{E}_n(f)=\int|\nabla f|^2\,d\mu_n$
, where the measures
$\mu_n$
locally converge in variation and it is not necessary to have complete supports.
Keywords:
diffusion semigroups, Mosco convergence, measure differentiability, quadratic forms, Sobolev classes.
Received:
19.11.2007
DOI:
10.4213/tvp2409
Fulltext:
PDF file (1749 kB)
References
Cited by
English version:
Theory of Probability and its Applications, 2009,
53
:2,
242–255
Bibliographic databases:
©
Steklov Math. Inst. of RAS
, 2026