RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 2008 Volume 53, Issue 2, Pages 277–292 (Mi tvp2409)

This article is cited in 3 papers

On Mosco Convergence of Diffusion Dirichlet Forms

O. V. Pugachev

N. E. Bauman Moscow State Technical University

Abstract: This paper considers the Mosco convergence of Dirichlet forms $\mathcal{E}_n(f)=\int|\nabla f|^2\,d\mu_n$, where the measures $\mu_n$ locally converge in variation and it is not necessary to have complete supports.

Keywords: diffusion semigroups, Mosco convergence, measure differentiability, quadratic forms, Sobolev classes.

Received: 19.11.2007

DOI: 10.4213/tvp2409


 English version:
Theory of Probability and its Applications, 2009, 53:2, 242–255

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026