RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1982 Volume 27, Issue 2, Pages 380–384 (Mi tvp2366)

This article is cited in 6 papers

Short Communications

On the estimation of the size of a finite population

G. I. Ivčenko, E. E. Timonina

Moscow

Abstract: We construct some estimates of the unknown size $N$ of finite population which are based on the sample of size $n$ drawn with replacement from this population. For the case when $N$, $n\to\infty$ and $0<\alpha_1\le \alpha=\frac{n}{N}\le\alpha_2<\infty$ (where $\alpha_1$ and $\alpha_2$ are given constants) a class of consistent uniformly asymptotically normal estimates of the parameter $\alpha$ is introduced. An asymptotically optimal (in this class) estimate is shown to be a function of the number $\eta_n$ of different elements in the sample.

Received: 05.04.1979


 English version:
Theory of Probability and its Applications, 1983, 27:2, 403–406

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026