RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1982 Volume 27, Issue 2, Pages 358–364 (Mi tvp2361)

This article is cited in 3 papers

Short Communications

The invariance principle for stationary random fields satisfying the strong mixing condition

V. V. Gorodeñkiĭ

Leningrad

Abstract: Let $\xi(u)$, $u\in R^q$, be a stationary random field satisfying the strong mixing condition, $V$ be an open set in $R^q$ with finite Lebesgue's measure $\mu(V)$,
$$ T(V)=\int_V\xi(u)\,du, $$
The sufficient condition for the weak convergence of
$$ \zeta_r(t)=(r^q\mu(V))^{-1/2}T(rt^{1/q}V),\qquad t\in[0,1], $$
to some Gaussian process $w_V(t)$ are obtained.

Received: 02.03.1979


 English version:
Theory of Probability and its Applications, 1983, 27:2, 380–385

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026