RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1971 Volume 16, Issue 3, Pages 446–457 (Mi tvp2258)

This article is cited in 35 papers

On an inequality in the theory of stochastic integrals

N. V. Krylov

Moscow

Abstract: Let
$$ x_t=\int_0^t\sigma_s\,d\xi_s+\int_0^tb_s\,ds $$
be an $n$-dimensional stochastic integral, $U$ be a bounded domain in the $n$-dimensional Euclidean space, $x'\in U$, $\tau$ be the first exit time of $x'+x_t$ out of $U$. Let $|b_t|\le M\cdot\sqrt[n]{\det\sigma_t^2}$ for all $t$$\omega$.
In the paper, a constant $N$ is proved to exist that depends only on $n$ and the diameter of $U$ such that, for all Borel functions $f$
$$ \mathbf M\int_0^\tau|f(x'+x_t)|\sqrt[n]{\det\sigma_t^2}\,dt\le N\|f\|_{L_n,U}. $$

The proof is based on the theory of convex polyhedrons.

Received: 13.01.1970


 English version:
Theory of Probability and its Applications, 1971, 16:3, 438–448

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026