RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1983 Volume 28, Issue 4, Pages 738–757 (Mi tvp2221)

This article is cited in 1 paper

Asymptotically optimal Bayesian tests for composite hypotheses

Yu. I. Ingster

Leningrad

Abstract: We consider two asymptotical ($\varepsilon\to 0$) problems of testing hypotheses $H_{0,\varepsilon}=\{P_{\varepsilon,\theta},\,\theta\in\Theta_0\}$ against $H_\varepsilon=\{P_{\varepsilon,\theta},\,\theta\in\Theta\diagdown\Theta_0\}$ with $\Theta_0\subset E^m$ being the subset of the parameter space $\Theta\subset E^n$, $0\le m<n$. Under sufficiently general assumptions about the families $P_{\varepsilon,\theta}$ and the densities $\pi_\varepsilon$ and $\pi_{\varepsilon,0}$ on $\Theta\diagdown\Theta_0$ and $\Theta_0$ we construct asymptotically optimal famalies of Bayesian tests and investigate the asymptotics of probabilities of errors.

Received: 23.05.1981


 English version:
Theory of Probability and its Applications, 1984, 28:4, 775–794

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026