RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1983 Volume 28, Issue 3, Pages 565–569 (Mi tvp2199)

This article is cited in 23 papers

Short Communications

A lower bound for the convergence rate in the central limit theorem

V. K. Matskyavichyus

Moscow

Abstract: For every sequence of nonnegative numbers $\varphi(n)\to 0$, $n\to\infty$ there exists a sequence of independent identically distributed random variables $X_1,X_2,\dots$ such that $\mathbf EX_1=0$, $\mathbf DX_1=1$ and for $n\ge n1$
$$ \sup_x|\mathbf P\{n^{-1/2}(X_1+\dots+X_n)<x\}-\Phi(x)|\ge\varphi(n). $$
The distribution of $X_1$ has the form
$$ \mathbf P\{X_1<x\}=\sum_{k=1}^\infty\lambda_k\Phi(x/\sigma_k); $$
$\lambda_k$, $\sigma_k$ and $n_1$ are explicit functions of $\{\varphi(n)\}_{n=1}^\infty$.

Received: 28.12.1982


 English version:
Theory of Probability and its Applications, 1984, 28:3, 596–601

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026