RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1971 Volume 16, Issue 2, Pages 328–338 (Mi tvp2152)

This article is cited in 11 papers

On asymptotic expansions for distribution functions of sums of independent random variables

L. V. Osipov

Leningrad

Abstract: Let $\{X_j\}$ be a sequence of independent identically distributed random variables with zero means and unit variances and let $F_n(x)$ be the distribution function of the sum $\frac1{\sqrt n}\sum_{j=1}^nX_j$. Asymptotic expansions of the function $F_n(x)$ are given which are more general than the classic expansion (0.1). We study also the asymptotic behaviour of the remainder in (0.1).


 English version:
Theory of Probability and its Applications, 1971, 16:2, 333–343

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026