RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1971 Volume 16, Issue 2, Pages 218–228 (Mi tvp2143)

This article is cited in 1 paper

Estimations in the theorem of the stability of Poisson distribution decompositions

J. J. Mačys

Institute of Physics and Mathematics, Academy of Sciences, Lithuanian SSR

Abstract: Let $\Pi_\lambda$ be a Poisson distribution function and $F=F_1*F_2$ a distribution function such that either in the Lévy metric or in the uniform metric $\rho(F,\Pi_\lambda)\le\varepsilon$.
We show that, there exists a Poisson distribution function $\Pi_{\lambda_1}$ such that
$$ \rho(F_1,\Pi_{\lambda_1})<C(\lambda)\sqrt{\frac{\ln(-\ln\varepsilon)}{(-\ln\varepsilon)}}. $$



 English version:
Theory of Probability and its Applications, 1971, 16:2, 215–227

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026