RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1984 Volume 29, Issue 1, Pages 134–141 (Mi tvp1979)

This article is cited in 4 papers

Short Communications

Random minimal trees

E. A. Timofeev

Yaroslavl

Abstract: We consider the length $l_n$ of minimal tree (the shortest connected net work) in a complete graph with $n$ vertices such that the lengths of its edges are independent identically distributed positive random variables. Under mild conditions on the distribution of the length of the edge the order of growth of $\mathbf Ml_n$ as $n\to\infty$ is found.

Received: 28.02.1981


 English version:
Theory of Probability and its Applications, 1985, 29:1, 134–141

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026