This article is cited in
6 papers
The invariance principle for weakly dependent variables
Â. A. Lifšic Leningrad
Abstract:
Let
$S_n=X_{n1}+\dots+X_{nn}$,
$\mathbf DX_{nk}<\infty$,
$\mathbf EX_{nk}=0$.
Denote $\mathscr F_k=\mathscr F_{nk}=\sigma\{(X_{ns})_{s\ge k}\}$ and
$E_kZ=\mathbf E(Z\mid\mathscr F_k)$.
Let
$\sigma$-field $\mathscr E^k=\sigma\{(E_j1_{X_{ni}<q})_{i\le j\le k,\,q\in R}\}$,
\begin{gather*}
\gamma_n(r)=\sup_k\sup_{B\in\mathscr F_{k+r}}\sup_{A_1,A_2\in\mathscr E^k} |\mathbf P(B\mid A_1)-
\mathbf(B\mid A_2)|,
\\
l_n=\min_{m\ge 2}\biggl(1+\sum_{n/m>r\ge 1}\sqrt{\gamma_n(mr)}\biggr)^{1/2}\biggl(m+\sum_{r\ge 1}\gamma_n(r)\biggr),\quad B_n^2=\mathbf DS_n.
\end{gather*}
We define the random functions on
$[0, 1]$
$$
\xi_n(t)=B_n^{-1}\sum_{j\ge 1}X_{nj}\mathbf 1_{b_j\le tB_n^2},\qquad b_j=(\mathbf D-\mathbf DE_j)\sum_{k=1}^jX_{nk},
$$
and denote by
$\mathscr L(\xi_n)$ the distribution of
$\xi_n$ in the Skorohod space.
Theorem. {\it If $\displaystyle\lim_{n\to\infty}B_n^{-2}\biggl(l_n+\sum_{r=1}^{n-1}\sqrt{\gamma_n(r)}\biggr)\sum_{j=1}^n\mathbf EX_{nj}^2 1_{|X_{nj}|>\varepsilon B_n/l_n}=0$ for every
$\varepsilon>0$,
then
$\mathscr L(\xi_n)$ converges weakly to a Wiener distribution.}
The estimate $\displaystyle\mathbf DS_n\ge\frac{1}{16}(1-\gamma_n(1))\sum_{k=1}^n\mathbf DX_{nk}$ is obtained also.
This theorem generalizes the well-known Dobrusin's results [9] for inhomogeneous
Markow chains.
Received: 12.03.1980