RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 2005 Volume 50, Issue 1, Pages 172–176 (Mi tvp166)

This article is cited in 2 papers

Short Communications

On estimation of a location parameter in presence of an ancillary component

A. M. Kagana, C. R. Raob

a University of Maryland
b Pennsylvania State University

Abstract: If $(X, Y)$ is an observation with distribution function $F(x-\theta,y)$, $\sigma^{2}=\textrm{var}(X)$, $\rho=\textrm{corr}(X,Y)$ and $I$ is the Fisher information on $\theta$ in $(X,Y)$, then $I\ge\{\sigma^2(1-\rho^2)\}^{-1}$. The equality sign holds under conditions closely related to the conditions for linearity of the Pitman estimator of $\theta$ from a sample from $F(x-\theta,y)$. The results are extensions of earlier results for the case when only the informative component $X$ is observed.

Keywords: Fisher information, Pitman estimator.

Received: 21.09.2004

Language: English

DOI: 10.4213/tvp166


 English version:
Theory of Probability and its Applications, 2006, 50:1, 129–133

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026