RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1970 Volume 15, Issue 1, Pages 116–119 (Mi tvp1569)

Short Communications

Carleman's classes for stationary processes

S. A. Ivankov

Moscow

Abstract: The main result of the present paper consists in demonstration of the fact that sample functions of a stationary stochastic process belong, with probability one, to Carleman's class $Ñ\{m_n\}$, if the correlation function of the process belongs to the same class, and if
$$ 0<D=\inf_y\biggl\{y\colon\varlimsup_{n\to\infty}\frac{m_{2n}}{m^2_ny^{2n}}=0\biggr\}<\infty $$

For processes satisfying the conditions
$$ \varliminf_{n\to\infty}\mathbf P\{(\xi^{(n)}(0))^2>\mathbf M(\xi^{(n)}(0))^2\}>0,\quad1<\frac{m_n}{m_{n-1}}<Vn^w, $$
where $V$ and $w$ are positive constants, the converse assertion is proved to be also true.

Received: 28.03.1968


 English version:
Theory of Probability and its Applications, 1970, 15:1, 115–117

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026