RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 2007 Volume 52, Issue 4, Pages 736–751 (Mi tvp1531)

This article is cited in 2 papers

Stable Processes, Mixing, and Distributional Properties. I

W. Jedidi

Université Pierre & Marie Curie, Paris VI

Abstract: In this article, we consider real-valued stable Lévy processes $(S_t^{\alpha, \beta,\gamma,\delta})_{t\ge 0}$, where $\alpha,\beta,\gamma,\delta$ are, respectively, the stability, skewness, scale, and drift coefficients. We introduce the notion of mixed stable processes $ (M_t^{\alpha, \beta,\gamma,\delta})_{t\ge 0}$ (i.e., we allow the skewness, scale, and drift coefficients to be random). Our mixing procedure gives a structure of conditionally Lévy processes. This procedure permits us to show that the sum of independent stable processes can be expressed via a mixed stable process.

Keywords: stable processes, density, derivatives.

Received: 23.06.2005

Language: English

DOI: 10.4213/tvp1531


 English version:
Theory of Probability and its Applications, 2008, 52:4, 580–593

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026