RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1969 Volume 14, Issue 4, Pages 715–718 (Mi tvp1483)

This article is cited in 3 papers

Short Communications

On the stability of decompositions of the unit distribution function

J. Macys

Institute of Mathematics and Informatics, AS of Lithuanian SSR, Vilnius

Abstract: Let $E$ be the unit distribution function
$$ E(x)= \begin{cases} 0,&x\le0 \\ 1,&x>0 \end{cases} $$
and $F=F_1*F_2$ be a distribution function such that in the uniform metric
$$ \rho(F,E)\le\varepsilon\le1/4. $$
Let $F_1$ have median 0. We show that
$$ \rho(F_1,E)\le\frac{1-\sqrt{1-4\varepsilon}}2. $$
and this estimate can not be improved.

Received: 03.03.1969


 English version:
Theory of Probability and its Applications, 1969, 14:4, 688–690

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026