This article is cited in
10 papers
An improvement of a convergence rate estimate
V. V. Sazonov Moscow
Abstract:
Let
$\xi_1,\xi_2,\dots$ be independent random variables equally distributed with a continuous distribution function
$F(x)$. Put
$$
W_n^2=n\int_{-\infty}^\infty[F_n(x)-F(x)]^2\,dF(x),
$$
where
$$
F_n(x)=\frac1n\sum_{j=1}^n\delta(x-\xi_j),\quad\delta(x)=
\begin{cases}
1,&x>0,
\\
0,&x\le0.
\end{cases}
$$
Denote by
$S(x)$ the distribution function with the characteristic function
$$
s(t)=\prod_{j=1}^\infty(1-2it(\pi j)^{-2})^{-1/2}.
$$
In [3], it has been shown that
$$
\Delta_n=\sup_{x\in R^1}|\mathbf P(W_n^2<x)-S(x)|\underset{n\to\infty}\longrightarrow0
$$
not slowlier than
$n^{-1/10}$. In the present paper, we obtain a stronger result: for any
$\varepsilon>0$ there exists a
$c(\varepsilon)$ such that
$$
\Delta_n\le c(\varepsilon)n^{-1/6+\varepsilon},\quad n=1,2,\dots.
$$
Received: 05.05.1969