RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1998 Volume 43, Issue 2, Pages 248–271 (Mi tvp1464)

This article is cited in 5 papers

Weak compactness of random sums of independent random variables

V. M. Kruglov

M. V. Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics

Abstract: The shift-compactness of random sums $S_{N_n}^{(n)}$, $S_k^{(n)}=X_{n,1}+\cdots +X_{n,k}$, of independent random variables is investigated under the assumptions that in each sum the summands and their number $N_n$ are independent and that the summands satisfy the condition of uniform asymptotic negligibility in the form
$$ \max_{1\le k\le N_n}\mathsf{P}\{|X_{n,k}|\ge\varepsilon\}\to0 $$
in probability for each $\varepsilon>0$. Some necessary and sufficient conditions are given for the weak compactness of random sums $S_{N_n}^{(n)}-A_n$, and the form of centering constants $A_n$ is described.

Keywords: random variable, distribution function, weak convergence, weak compactness, shift-compactness, random sum.

Received: 25.06.1996

DOI: 10.4213/tvp1464


 English version:
Theory of Probability and its Applications, 1999, 43:2, 203–220

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026