Abstract:
We consider the random variable $\zeta=\omega_1\beta^{-1}+\omega_2\beta^{-2}+\dotsb$, where $\omega_1,\omega_2,\dots$ is the stationary ergodic 2-step Markov chain with states 0, 1 and $\beta$ is the golden ratio. The paper finds all cases of absolute continuity of the distribution function of the random variable $\zeta$. For other cases the distribution function in continuous and singular. We prove that the respective Erdős measures arise under gluing together the states in a finite Markov chain. Ergodic properties of invariant Erdős measure are studied.
Keywords:2-step Markov chain, golden ratio, Erdős measure, maximal entropy measure, $K$-automorphism, measure of Hausdorff dimensionality.