Abstract:
In the theory of Brownian motion many related processes have been considered for a long time and have already been studied. Among them there are such Brownian motion functionals as a local time, an occupation time above some fixed level, a value of the maximum on a segment, and the argument of that maximum. One-dimensional distributions of them and some joint distributions are explicitly calculated, and many other relations are established. In this paper we consider a simple symmetric random walk, i.e., a random walk with a Bernoulli step. Based on it we define discrete analogues of the functional mentioned above. As the main result we prove a certain equality of two conditional distributions which includes all those discrete random variables. The proof is based upon a rather interesting transform on the set of all random walk paths which rearranges in some way its positive and negative excursions. Further we perform a limit passage to obtain the analogous equality between the conditional distributions of Brownian motion functionals. Both the discrete and continuous variants of this equality have never been mentioned before.
Keywords:Brownian motion, random walk, local time, occupation time, maximum, distribution, excursions.