RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1980 Volume 25, Issue 4, Pages 675–682 (Mi tvp1224)

This article is cited in 2 papers

Stochastic differential equations depending on a parameter

A. V. Skorohod

Kiev

Abstract: We consider a stochastic differential equation
$$ d\xi_\theta=a_\theta(t,\xi_\theta(\,\cdot\,))\,dt+B_\theta(t,\xi_\theta(t))\,dw(t),\qquad\xi_\theta(0)=x_\theta, $$
such that its coefficients and initial condition are continuous functions of $\theta\in\Theta$, where $\Theta$ is a complete metric space. If an equation has a strong solution on a dense subset $\Theta_1\subset\Theta$, then $\Theta_1$ is of the second category and coincides with the set $\Theta_0$ of continuity of $\xi_\theta(t)$.

Received: 04.07.1979


 English version:
Theory of Probability and its Applications, 1981, 25:4, 659–666

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026