RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 2005 Volume 50, Issue 2, Pages 396–404 (Mi tvp118)

This article is cited in 11 papers

Short Communications

Some properties of generalized Pickands constants

K. Debicki

Wroclaw University

Abstract: We study properties of generalized Pickands constants $\mathcal{H}_{\eta}$, which appear in the extreme value theory of Gaussian processes and are defined via the limit
$$ \mathcal{H}_{\eta}=\lim_{T\to\infty}\frac{\mathcal{H}_{\eta}(T)}{T}, $$
where $\mathcal{H}_{\eta}(T)=\mathbf{E}\exp(\max_{t \in[0,T]}(\sqrt{2}\,\eta(t)-\mathrm{Var}(\eta(t))))$ and $\eta(t)$ is a centered Gaussian process with stationary increments.
We give estimates of the rate of convergence of $\mathcal{H}_{\eta}(T)/T$ to $\mathcal{H}_{\eta}$ and prove that if $\eta_{(n)}(t)$ weakly converges in $C([0,\infty))$ to $\eta(t)$, then under some weak conditions, $\lim_{n\to\infty}\mathcal{H}_{\eta_{(n)}}=\mathcal{H}_{\eta}$.
As an application we prove that $\Upsilon(\alpha)=\mathcal{H}_{B_{\alpha/2}}$ is continuous on $(0,2]$, where $B_{\alpha/2}(t)$ is a fractional Brownian motion with Hurst parameter $\alpha/2$.

Keywords: exact asymptotics, extremes, fractional Brownian motion, Gaussian process, generalized Pickands constants.

Received: 20.08.2002

Language: English

DOI: 10.4213/tvp118


 English version:
Theory of Probability and its Applications, 2006, 50:2, 290–298

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026