Abstract:
Let $w_t$, $t\in[0,\infty)$, be the Brownian motion. For any probability law $\mu$ on $(0,\infty]$,
there exists a subset $B$ of $[-\infty,\infty]\times(0,\infty]$ such that the distribution of the stopping
time
$$
\tau=\inf\{t>0:(w_t,t)\in B\}
$$
coincides with $\mu$.