RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1999 Volume 44, Issue 4, Pages 874–880 (Mi tvp1073)

This article is cited in 14 papers

Short Communications

New characterization of discrete distributions through weak records

F. A. Alievab

a Baku State University, Faculty of Applied Mathematics, Azerbaijan
b Ankara University, Faculty of Science, Department of Statistics, Turkey

Abstract: Let $X_{1},X_{2},\ldots$ be a sequence of independent and identically distributed random variables taking on values $0,1,\ldots$ with a distribution function $F$ such that $F(n) < 1$ for any $n=0,1,\ldots$ and $\mathbf{E} X_{1}\log (1+X_{1}) < \infty $. Let $X_{L(n)}$ be the $n$th weak record value and $\{ A_{k}\}_{k=0}^{\infty }$ be any sequence of positive numbers, such that $A_{k+1} > A_{k}-1$. This paper shows that if there exists an $F(x)$, with $\mathbf{E} \{X_{L(n+2)}-X_{L(n)}\mid X_{L(n)}=s\}=A_{s}$ for some $n > 0$ and all $s\ge 0$, then $F(x)$ is unique.

Keywords: records, weak records, characterization of discrete distributions.

Received: 05.05.1998

Language: English

DOI: 10.4213/tvp1073


 English version:
Theory of Probability and its Applications, 2000, 44:4, 756–761

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026