RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1969 Volume 14, Issue 1, Pages 3–14 (Mi tvp1032)

This article is cited in 25 papers

Skorohod A. V. Markov processes with homogeneous second component. I.

I. I. Ezhov, A. V. Skorokhod

Kiev

Abstract: We consider Markov processes $z_t=\{x_t,y_t\}$ in a product space $X\times Y$ ($x_t\in X$, $y_t\in Y$), $Y$ being a finite-dimensional Euclidean space. Such a process is called a process with homogeneous second component if its transition probability function $P(t,x,y,s,A,B)$, $x\in X$, $y\in Y$, $A\subset X$, $B\subset Y$, $t<s$, satisfies the condition
$$ P(t,x,y,s,A,B)=P(t,x,0,s,A,B_{-y}), $$
where $B_{-y}$ is the set of $y'$'s such that $y+y'\in B$. In §1 we study general properties of such processes. In §2 the case is considered when $x_t$ is a process with denumerable set of states. §3 deals with time-homogeneous processes.

Received: 15.01.1968


 English version:
Theory of Probability and its Applications, 1969, 14:1, 1–13

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026