RUS  ENG
Full version
JOURNALS // Taurida Journal of Computer Science Theory and Mathematics // Archive

Taurida Journal of Computer Science Theory and Mathematics, 2021 Issue 2, Pages 88–101 (Mi tvim120)

On the stability of stationary states in diffusion models

M. V. Polovinkinaa, I. P. Polovinkinbc

a Voronezh State University of Engineering Technologies
b Voronezh State University
c Belgorod State University

Abstract: We consider the initial-boundary value problem for the system of partial differential equations:
\begin{equation*} \frac{\partial u_s}{\partial t}=\vartheta_s \Delta u_s+F_s(u),\ s=1,\dots,m, \ x=(x_1,\dots,x_n)\in\Omega\subset\mathbb{R}^n, \end{equation*}

\begin{equation*} \left.\left(\mu_s u_s + \eta_s\frac{\partial u_s}{\partial\overrightarrow{\nu}}\right)\right|_{x\in\partial\Omega}=B_s(x),\ \mu_s^2+\eta_s^2>0, \ \mu_s\geq0,\ \eta_s \geq 0, \end{equation*}

\begin{equation*} u_s(x,0)=u_s^0(x), \ s=1,\dots,m, \end{equation*}
where $\Omega$ is a bounded domain with a piecewise smooth boundary $\partial\Omega$, $\overrightarrow{\nu}$ is a unit external normal vector to the boundary $\partial\Omega$ of the domain $\Omega$, $u=(u_1(x,t),\dots,u_m(x,t))$, $\vartheta_s\geq 0$, ${\rm diam}\Omega=d$, $B_s(x)\in C(\partial\Omega)$, $u_s^0(x)\in C(\overline{\Omega})$, $s=1,\dots,m,$ ${\overline{\Omega}=\Omega\cup\partial\Omega},$ $\Delta$ is the Laplace operator defined by the formula
$$ \Delta v= \sum\limits_{j=1}^n\,\frac{\partial^2 v}{\partial x_j^2}. $$
It is assumed that the functions $F_s$ are differentiable at a stationary point. Let $w=(w_1(x),\dots,w_m(x))$ be a stationary solution of the considered problem, that is, the solution of the boundary problem
\begin{equation*} \vartheta_s \Delta w_s+F_s(w)=0,\ s=1,\dots,m, \ x\in\Omega, \end{equation*}

\begin{equation*} \left.\left(\mu_s w_s + \eta_s\frac{\partial w_s}{\partial\overrightarrow{\nu}}\right)\right|_{x\in\partial\Omega}=B_s(x),\ s=1,\dots,m. \end{equation*}
We showed that a sufficient condition for the stability of a stationary solution is the negative definiteness of the quadratic form
\begin{equation*} \sum\limits_{s=1}^m\sum\limits_{k=1}^m\,A_{sk}\,z_kz_s\,, \end{equation*}
where
\begin{equation*} A_{sk}=\frac{1}{2}\left(\frac{\partial F_s}{\partial x_k}+\frac{\partial F_k}{\partial x_s}\right)-\delta_{ks}\vartheta_s/d^2. \end{equation*}
We note from a general point of view that adding diffusion terms to ordinary differential equations, for example, to logistic ones, can in some cases improve sufficient conditions for the stability of a stationary solution. We give examples of models in which the addition of diffusion terms to ordinary differential equations changes the stability conditions of a stationary solution.

Keywords: diffusion model, initial boundary value problem, stationary solution (state), stability, sufficient stability condition.

UDC: 519.765, 51-7, 517.9

MSC: 35B35, 35Q99



© Steklov Math. Inst. of RAS, 2026