RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2020 Volume 205, Number 1, Pages 146–155 (Mi tmf9893)

Phase transitions for models with a continuum set of spin values on a Bethe lattice

Yu. Kh. Eshkabilova, G. I. Botirovb, F. H. Haydarovc

a Karshi State University, Kashkhadaryo, Uzbekistan
b Institute of Mathematics, Tashkent, Uzbekistan
c National University of Uzbekistan, Tashkent, Uzbekistan

Abstract: We consider a model with nearest-neighbor interactions and the set $[0,1]$ of spin values on a Bethe lattice {(}Cayley tree{\rm)} of arbitrary order. This model depends on a continuous parameter $\theta$ and is a generalization of known models. For all values of $\theta$, we give a complete description of the set of translation-invariant Gibbs measures of this model.

Keywords: Cayley tree, spin value, Gibbs measure, Hammerstein's equation, fixed point.

Received: 23.02.2020
Revised: 10.04.2020

DOI: 10.4213/tmf9893


 English version:
Theoretical and Mathematical Physics, 2020, 205:1, 1372–1380

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026